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Abstract—The DETR series, known for its end-to-end object
detection models, has gained significant attention for its per-
formance. RT-DETR excels with higher accuracy and faster
real-time inference. However, applying these models to medical
imaging poses challenges, such as low-contrast and complex
lesion structures, which can reduce effectiveness. When detecting
tumors, models may overfit due to the distinct differences and
variability between different cases, affecting generalization and
accuracy. To address these challenges, we propose a multi-
view parallel feature extraction module, specifically for tumor
detection. This module includes adaptive preprocessing, joint
axial and channel attention, multi-pooling angular attention to
enhance relevant features and reduce redundancy. Additionally,
axial dynamic deformable convolution is used to improve adapt-
ability and robustness. The resulting PMA-DETR architecture
achieves state-of-the-art tumor detection while maintaining real-
time processing.

Index Terms—medical images, tumor detection, attention im-
provements

I. INTRODUCTION

Tumor detection in ultrasound is complex due to many
missed and misleading tumor-like lesions [1]. Tumors are
classified as benign or malignant. Benign tumors cause min-
imal impact unless large, while malignant tumors are highly
harmful. Deep learning-based object detection is pivotal in this
process [2]. Effective detection models can help to mitigate
this task in an efficient and automated manner.

Existing object detection models, trained on high-quality
datasets like COCO [3], handle well-separated targets. How-
ever, tumors data faces challenges such as low resolution,
indistinct boundaries, and significant morphological variations.
There is a lack of suitable models for it. Although RT-DETR
[4] shows superior performance in general detection tasks,
defeats famous target detection methods such as YOLO series
[5], its adaptation to medical images particularly for tumors
still requires further optimization despite its advantages [6].
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To address the challenges, we design a new PMA-
DETR(Parallel Multi-view scale convolution and multi-
level contextual Attention Tumor DETR), we implement
the following enhancements:

o We introduce a Parallel Multi-view Scale Convolu-
tion and Dilated Convolution Module (PMCD) for
tumor preprocessing. It combines attention mechanisms
and multi-residual links to effectively capture semantic
features across different shapes of tumors.

« We develop a novel Integrated Multi-level Contextual
Attention Aggregation Module (IMCA). These inno-
vations are designed to suppress redundant information
and enhance the representation of relevant features. This
ensures that subsequent features are more precise in
characterization.

« Additionally, considering the irregular and complex na-
ture of tumors, we design a new Multi-axis Deformable
Convolution Module (MDC). This enhancement incor-
porates offset learning, allowing convolution to better
adapt to local deformations and capture the unique char-
acteristics of tumors.

These refinements enhance our object detector’s capability
to effectively detect tumors in medical images by improving
feature extraction, attention mechanisms, and convolution op-
erations tailored to the specific challenges.

II. METHOD

Distinguishing from existing natural image detectors, we
design a joint Parallel Multi-view Scale Convolution and
Dilated Convolution Module to address the challenges of
tumor detection in medical images. This helps the model
focus on effective lesion areas early. Itegrated Multi-level
Attention Aggregation Module enhances the representation
of extracted features, while the Multi-axis Deformable Con-
volution Module adapts the detector to the variability of tumor

Authorized licensed use limited to: Southeast University. Downloaded on April 22,2025 at 04:18:50 UTC from IEEE Xplore. Restrictions apply.



features. Replacing the standard convolution in DETR with
MDC significantly improves the model’s robustness.
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Fig. 1. The Axis Adaptive-Channel Aggregation Attention Block processes
the input feature map using maximum and average pooling to extract impor-
tant information. It facilitates complementarity between spatial and channel
attention.
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Fig. 2. The Joint Self-spatial Multi-level Feature Aggregation Block uses
nearest concatenation upsampling and concatenation on different features.
Contextual Attention utilizes contextual information between input keys to
guide the learning of dynamic attention matrices.

A. Parallel Multi-view Scale Convolution and Dilated Convo-
lution Module

In order to adapt to multi-scale target detection in medi-
cal images, before feature extraction backbone, four parallel
convolutions in PMA-DETR are used to extract multi-scale
features. How to strike a balance between receptive field
and computational effort? Using dilated convolutions with
different dilation rates in parallel. Using multiple sizes, it
extracts features across various scales addressing variability in
tumor shapes. Integrating dilated convolutions with different
dilation rates expands the receptive field, allowing the model
to capture irregularity. The structure composed of this module
and subsequent integrated attention is shown in Figure 3.

B. Integrated Multi-level Attention Module

Two sub-attention modules Axis Adaptative-Channel Ag-
gregation Attention Block (ACA Block) and Joint Self-spatial
Multi-level Aggregation Block (JSMF Block), are designed
to be cascaded in PMA-DETR. Realizing new spatial-channel
attention, and effective complementarity of picture information
contexts. By performing multi-view attention computation,
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Fig. 3. Parallel Multi-view Scale Convolution and Dilated Convolution
Module and Integrated Multi-level Attention Aggregation Module. Inherits
multi-layer hybrid convolution, JSMF attention and ACA attention module.

features in the effective region are enhanced and redundant
part are suppressed.

1) Axis Adaptative-Channel Aggregation Attention Block:
Ultrasound images often contain noise and artifacts, which can
be mitigated through channel attention mechanisms improving
model robustness. As shown in Figure 1. We propose a
Axis Adaptative-Channel Aggregation Attention to enhance
the network’s ability to process features across both channel
and spatial dimensions. Additionally, adaptive average pooling
is performed on the horizontal and vertical axes. The final
output is element product of horizontal and vertical attention
maps, expressed as the following formula:

SAy = Sigmoid (GroupNorm (Convld (Hpeor))), (1)
SA,, = Sigmoid (GroupNorm (Convld (Wyeot))), (2)
SAout = SApL X SA,. 3)

In the design of channel attention, adaptive pooling are
performed on the channels respectively to extract channel
statistical information, and channel attention map is obtained
after redistribution. The formula is as follows:

CAout = Sigmoid(Conv2d(AvgPool(X)))

+ Sigmoid(Conv2d(MaxPool(X))), (4)

input X is element-wise multiplied with channel attention map
and spatial to obtain final map. The final output is:

Out = CAout X X X SAgut- 5)

2) Joint Self-spatial Multi-level Aggregation Block: Global
information aids models in understanding overall content
and long-term dependencies, but global multi-head attention
can introduce high computational overhead. Lesion areas are
typically small and calculating attention across entire image
can introduce noise, diluting key local details.

As shown in Figure 2,the Joint Self-spatial Multi-level
Feature Aggregation Block aims to achieve global interaction
similar to attention mechanisms without exce ssive cost. Long-
distance interactions are enabled through multi-scale feature
fusion. The input feature X is split along the channel di-
mension, and different spatial down-sampling and up-sampling
processes are applied. The above process is expressed as the
following formula:

S; = AdaptiveMaxPool <XC [i], (5, ?j)) ,  (6)
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Smaller feature maps have larger receptive fields, so convo-
lution with the same kernel size produces different receptive
fields across scales. We introduce global residual connection to
learn high-frequency details and fast reconstruction. Addition-
ally, the Contextual Attention Block (CoA) utilizes contextual
information between input keys to guide the learning of dy-
namic attention matrices. Specifically, the CoA block encodes
input keys via convolutions generating a static contextual
representation. CoA performs context encoding on all adjacent
keys within the grid and concatenate the context K1 and Q.
The expressions are as follows:

F € RTWX2C — Coneat (K1, Q) , 0

M € RHXWx(kxkxCh) =FW ,Wg, ®)

K1 reflects the static context information of local adjacent
positions, W4 € R2C*XP Wy ¢ RPX(kxkxCh) represents
the parameters of two consecutive pointwise convolutions.

C. Multi-axis Deformable Convolution Module

Due to the small proportion of tumor lesions, the model
inevitably loses its perception of the corresponding structure,
and the convolutional nucleus is completely free from the
target. Therefore, we hope to design specific feature extraction
based on the characteristics of the lesion structure, so as to
lead the model to focus on the key core features. Benign
and malignant tumors, as well as different stages of the same
tumor, present diverse morphologies. This variability causes
models to overfit to previous features and struggle with novel
shapes, weakening generalization and accuracy.

Inspired by Dynamic Snake Convolution (DSConv) [7], we
design a new Multi-axis Deformable Convolution to replace
traditional convolutions. This adaptation aims to capture the
central structure of tumors more flexibly while maintaining
alignment with target structure under constraints.

The Multi-axis Deformable Convolution Module begins
with offset learning via a standard 2D convolution layer
for each kernel position. Subsequently, input feature map
undergoes coordinate mapping, where new feature coordinates
are generated based on learned offsets. This process relies on
kernel size,deformation range and so on. It can be described:

of fset = tanh(BatchNorm (Conv2d (X))),  (9)

Tnew = Tcenter T Lgrid + Offset : AS; (10)

Y

Tpew aNd Ypeq represent coordinates after convolution kernel
position, AS means extend scope. This operation adjusts
kernel’s position on the feature map to respond to local
deformations, improving the model’s adaptability to complex
scale changes in lesions. In addition to x and y axes, kernel
positions are adjusted in 45-degree and 135-degree directions.
By deforming, model can better adapt to morphological char-
acteristics of tumor targets.

Ynew = Ycenter T Ygrid + of fset - AS,

III. EXPERIMENTS
A. Dataset

Breast Ultrasound Image (BUSI). We chose the BUSI

dataset which data collected includes breast ultrasound images
of women aged between 25 and 75 years old. This data
was collected in 2018. The number of patients is 600 female
patients. This dataset consists of 780 images, with an average
image size of 500 * 500 pixels. These images are in PNG
format. The tumor image (mask) is presented together with
the original image. These images are classified into three
categories, namely normal (tumor free), benign benign, and
malignant. We will convert the corresponding lesion areas of
this dataset into txt format labels.
Brain Tumor v2.0. We also select the Brain Tumor Detection
dataset publicly available on Roboflow by Yousef Ghanem.
This dataset collected 9900 image data from brain CT imaging,
with three corresponding labels identifying the tumor area of
the lesion. We divided the dataset images into 7920 training
sets, 990 validation sets, and 990 testing sets.These two
datasets are both tumor detection task data in medical image
scenes, which can to some extent prove the effectiveness and
robustness of the method proposed in this paper.

B. Experimental Process and Results

We use the RT-DETR-r18 version as baseline network with
the AdamW optimizer. The initial learning rate is set to 0.0001,
with a learning rate decay factor of 1.0, momentum of 0.9, and
weight decay of 0.0001. The images size are fixed at 640x640,
and the batch size is 8. The model is trained on an NVIDIA
Tesla V100 32GB GPU.

We test the effectiveness of the proposed module on the
BUSI and Brain Tumor v2.0 datasets before integrating it
into the feature extraction backbone and replacing the axial
deformable convolution module. Ablation studies and com-
parisons with other object detection algorithms are conducted.

Under same experimental parameters and data augmen-
tations, proposed methods demonstrating effectiveness. IOU
measures the overlap between the ground truth and predicted
boxes, while mAP (mean Average Precision) averages pre-
cision across multiple categories. The performance of PMA-
DETR on BUSI dataset is shown in Table I, performance on
the Brain Tumor v2.0 dataset is shown in Table II.

TABLE I
COMPARATIVE EXPERIMENTS ON BUSI DATASET USED ONE-STAGE AND
DETR SERIES DETECTORS. PMA-DETR OUTPERFORM OTHERS WITH
THE SAME BACKBONE SCALE, EFFECTIVELY CAPTURES THE CORE
FEATURES OF TUMOR LESIONS. YOLO SERIES USE THE DEFAULT
NORMAL SCALE, WHILE OTHERS INCLUDING DETR, USE THE SMALLEST
SCALE BACKBONE. M AND B MEAN MALIGNANT TUMOR CATEGORY AND
BENIGN. PMA-DETR PERFORMS WELL ON BOTH TYPES OF TUMORS.

Model

Yolov5 [8]
Yolov7 [9]
Yolov8 [10]
SMCADETR [11]
DETR-DCS5 [12]
Df-DETR [13]
DINO [14]

mAP50(M)

69.4%
72.0%
72.6%
69.9%
69.7%
67.3%
70.0%

74.7%

mAP50(B)

87.0%
85.3%
87.1%
84.0%
86.2%
83.2%
86.7%

88.7%

mAP50(all)

78.2%
77.1%
78.6%
74.3%
75.5%
76.0%
78.3%

80.2%

mAP50-95

53.9%
52.4%
53.8%
50.9%
51.4%
52.8%
53.2%

60.2%

Our model
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Fig. 4. Predicted results on the BUSI dataset. The pink and red boxes represent
the detection results of benign and malignant tumors, respectively.

TABLE 11
BRAINTUMORV2.0 DATASET COMPARISON EXPERIMENT. ONE STAGE AND
DETR SERIES TARGET DETECTORS ARE SET UP. SET THE SAME AS BUSI
DATASET. PMA-DETR ACHIEVES THE BEST PERFORMANCE UNDER THE
SAME SCALE BACKBONE, ACHIEVES SIGNIFICANT LEADERSHIP IN BOTH
MAP50 AND MAP50-90 INDICATORS.

Model mAP50 mAP50-95
Yolov5 [8] 79.8% 53.7%
Yolov7 [92) 78.8% 52.3%
Yolov8 [10] 79.3% 52.5%
SMCADETR [11] 77.2% 50.7%
DETR-DC5 [12] 77.0% 51.3%
Df-DETR [13] 80.0% 52.7%
DINO [14] 78.6% 51.9%
Our model 83.9% 62.9%

C. Ablation Experiment

In order to verify the effect of different components, we
conduct a detailed ablation experiment. We enable different
modules on the basic network structure for testing. Specifi-
cally, we test the following situations:

o Enable the Parallel Multi-view Scale Convolution and

Dilated Convolution Module(PMCD) separately;
o Enable the Integrated Multi-level Contextual Attention
Aggregation Module(IMCA) separately;

o Enable the Multi-axis Deformable Convolution Mod-

ule(MDC) separately;

o Enable PMCD, IMCA and MDC modules simultaneously

in PMA-DETR.

As shown in Table 111, when PMCD, IMCA and MDC modules
are enabled at the same time, the experimental results are opti-
mal. Specifically, the mAP50 of malignant tumors is increased
from 68.4% to 74.7%, the mAP50 of benign is increased
from 86.2% to 88.6%, the overall mAPS50 is increased to
80.2%, and the mAP50-95 is also increased from 57.3% to
60.2%. These results show that new module effectively solves
the challenges when processing medical data and significantly
improves detection performance on complex tumors.

TABLE III
ABLATION EXPERIMENT WITH OUR MODULE ON BACKBONE. COMPARED
TO THE ORIGINAL DETR NETWORK STRUCTURE, OUR NEW MODULES
SIGNIFICANTLY IMPROVE MAP INDICATORS OF BOTH MALIGNANT AND
BENIGN TUMORS.

PMCD IMCA MDC mAP50(M) mAP50(B) mAP50(all) mAP50-95
68.4% 86.2% 77.4% 57.3%
v 75.0% 83.8% 79.1% 58.0%
v 72.2% 83.1% 78.3% 57.8%
v 73.9% 85.0% 79.4% 58.4%
v v v 74.7% 88.7% 80.2% 60.2%

D. Attention Experiment

In order to verify the effectiveness of the hybrid attention
module proposed in this paper and other types of attention
modules, we conduct detailed comparative experiments cov-
ering a variety of common attention mechanisms, including
methods based on channel attention and spatial attention. As
shown in Table IV, the hybrid attention module proposed in
this paper combines spatial multi-scale and channel attention
mechanisms and achieves the best results in experiments, with
80.2% mAP50 and 60.0% mAP50-90.

TABLE IV
COMPARATIVE EXPERIMENTS VERIFYING THE HYBRID ATTENTION
MODULE PROPOSED IN THIS PAPER WITH OTHER TYPES OF ATTENTION.
THE EXPERIMENTS DISTINGUISH BETWEEN COMMON OBJECT DETECTION
METHODS BASED ON CHANNEL ATTENTION AND SPATIAL ATTENTION.
OUR ATTENTION ACHIEVES THE BEST RESULTS BY COMBINING SPATIAL
MULTI-SCALE AND CHANNEL ATTENTION MECHANISMS.

Attention Block mAP50 mAP50-90 From Dimension
Triplet Attention [15] 78.1% 56.2% WACV2021 Channel
P2TAttention [16] 78.0% 56.3% TPAMI2022 Spatial
MuLinearAttention [17] 79.4% 58.0% ICCV2023 Spatial
Sgformer [18] 78.6% 57.1% ICCV2023 Spatial
CoTAttention [19] 78.4% 57.7% TPAMI2022 Spatial
CGAFusion [20] 78.9% 56.7% TIP2024 Mix
Our model 80.2% 60.2% / Mix

IV. CONCLUSION

Our paper focuses on adaptively enhancing the Transformer-
based object detection model RT-DETR for medical image
tumor data. We introduce a Parallel Multi-view Scale Con-
volution and Dilated Convolution Module to adapt to low-
resolution and unclear lesion boundaries by dynamically ad-
justing receptive fields. Additionally, an Integrated Multi-level
Attention Aggregation Module is designed to enhance local
and global feature representation. We also optimize the con-
volution in the original DETR with a Multi-axis Deformable
Convolution Module to improve tumor feature capture. Our
method outperforms other object detection techniques on med-
ical image datasets. Incorporating the three proposed modules
improves the model’s mAP50 and mAP50-90 metrics by 2.8%
and 2.9%, respectively. The resulting PMA-DETR architecture
enables state-of-the-art oncology testing and will be a powerful
tool for tumor lesion detection.
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